weighted szeged indices of some graph operations

نویسندگان

kannan pattabiraman

p. kandan

چکیده

in this paper, the weighted szeged indices of cartesian product and corona product of twoconnected graphs are obtained. using the results obtained here, the weighted szeged indices ofthe hypercube of dimension n, hamming graph, c4 nanotubes, nanotorus, grid, t− fold bristled,sunlet, fan, wheel, bottleneck graphs and some classes of bridge graphs are computed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Szeged Indices of Some Graph Operations

In this paper, the weighted Szeged indices of Cartesian product and Corona product of two connected graphs are obtained. Using the results obtained here, the weighted Szeged indices of the hypercube of dimension n, Hamming graph, C4 nanotubes, nanotorus, grid, t−fold bristled, sunlet, fan, wheel, bottleneck graphs and some classes of bridge graphs are computed.

متن کامل

A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper...

متن کامل

Computing GA4 Index of Some Graph Operations

The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v     , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G   u v    , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...

متن کامل

On Powers of Some Graph Operations

Let $G*H$ be the product $*$ of $G$ and $H$. In this paper we determine the rth power of the graph $G*H$ in terms of $G^r, H^r$ and $G^r*H^r$, when $*$ is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G*H)^r=G^r*H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.

متن کامل

The Wiener Related Indices of Some Graph Operations

The Wiener index of a connected graph G, denoted by W(G) , is defined as ∑ ( , ) , ∈ ( ) .Similarly, hyper-Wiener index of a connected graph G,denoted by WW(G), is defined as ( ) + ∑ ( , ) , ∈ ( ) .In this paper, we present the explicit formulae for the Wiener, hyper-Wiener and reverse Wiener indices of some graph operations. Using the results obtained here, the exact formulae for Wiener, hyper...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

ناشر: university of isfahan

ISSN 2251-8657

دوره 5

شماره 1 2016

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023